Axial elongation in fishes: using morphological approaches to elucidate developmental mechanisms in studying body shape.

نویسندگان

  • Andrea B Ward
  • Rita S Mehta
چکیده

One of the most notable features in looking across fishes is their diversity of body shape and size. Extant actinopterygian fishes range in shape from nearly spheroidal in pufferfishes to extremely elongate in snipe eels with nearly every shape in-between. One extreme along the body-shape continuum is a highly elongate form, which has evolved multiple times independently in Actinopterygii. Thus, comparison of these separate (independent) radiations provides a unique opportunity for examining the anatomical traits underlying elongation as well as the similarities and differences in the evolutionary pathways followed. Body elongation generally evolves via an increase in region-specific vertebral number, although certain lineages elongate via an increase in vertebral length. In this study, we describe how anatomical characters related to feeding and locomotion are correlated with elongation of the body across Actinopterygii. In addition to modifications of the postcranial axial skeleton, elongation in fishes is often accompanied by an increase in head length, loss of the pelvic fins, reduction of the pectoral fins, and expansion of the median fins. Based on anatomical studies and on recent studies of developmental control of the body axis in different species, we hypothesize how an axial trait might change at the genetic level. Overall, we discuss the evolution of body elongation in fishes in light of an understanding of the underlying anatomical modifications, developmental control, ecology, and locomotion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Morphospace for Reef Fishes: Elongation Is the Dominant Axis of Body Shape Evolution

Tropical reef fishes are widely regarded as being perhaps the most morphologically diverse vertebrate assemblage on earth, yet much remains to be discovered about the scope and patterns of this diversity. We created a morphospace of 2,939 species spanning 56 families of tropical Indo-Pacific reef fishes and established the primary axes of body shape variation, the phylogenetic consistency of th...

متن کامل

The fish tail as a derivation from axial musculoskeletal anatomy: an integrative analysis of functional morphology.

The adult morphology of the tail varies greatly among extant fishes despite sharing both ontogenetic similarities and the functional need to propel the body through a fluid medium. Both sharks (Chondrichthyes) and ray-finned fishes (Actinopterygii) control caudal fin musculature independently of axial body myomere activity to modify the stiffness and shape of their tails. For example, sharks an...

متن کامل

Crater lake habitat predicts morphological diversity in adaptive radiations of cichlid fishes.

Adaptive radiations provide an excellent opportunity for studying the correlates and causes for the origin of biodiversity. In these radiations, species diversity may be influenced by either the ecological and physical environment, intrinsic lineage effects, or both. Disentangling the relative contributions of these factors in generating biodiversity remains a major challenge in understanding w...

متن کامل

Morphological plasticity in a native freshwater fish from semiarid Australia in response to variable water flows

In fishes, alterations to the natural flow regime are associated with divergence in body shape morphology compared with individuals from unaltered habitats. However, it is unclear whether this morphological divergence is attributable to evolutionary responses to modified flows, or is a result of phenotypic plasticity. Fishes inhabiting arid regions are ideal candidates for studying morphologica...

متن کامل

Effect of salinity on the body shape of sword tail, Xiphophurus helleri, during early developmental stage

This study aimed to investigate the effect of an isosmotic point of salinity i.e. 12 ppt on the body shape of sword tail, Xiphophurus helleri, during the early development using geometric morphometric approach. In total sixty newly hatched larvae reared in two salinity treatments (0.5 and 12 ppt) for a period of two months. Then the left side of the specimens were photographed and sixteen landm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Integrative and comparative biology

دوره 50 6  شماره 

صفحات  -

تاریخ انتشار 2010